TEMPERATURE DISTRIBUTION IN A GAS CONDUCTOR
HEATED BY DIRECT CURRENT

D. F. Bozhko, E. I. Molodykh, UDC 536.12
and A. V. Pustogarov

Approximate solutions are obtained for the energy-balance equation for cylindrical and
planar conductors, with an account of the temperature dependence of the electrical and ther-
mal conductivities and the integral radiation. An exact solution is given for a planar con-
ductor.

Cylindrical Conductor {(Approximate Solution). A successive-approximation treatment of a cylindrical
conductor (an arc column) with an account of radiative energy transfer was reported previously [1-3]. Ap-
proximate analytic expressions were obtained for the radiation from an optically thin layer.

The energy-balance equation per unit length of a cylindrical arc column when there is no axial heat
flow is written [1]

o(T)EZ—U(T)+% %[d(T)%}:O. (1)

T
Introducing the heat-conduction function 8 = g AMT)AT [4] and the relative radius p = r/R, we find

6
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To solve Eq. (2), we divide the cross section of the arc channel into a central conducting region, from
p = 0 to p; {the boundaries of the conducting region), and a cold region, from p to p = 1, near the wall, in
which o = 0 and U = 0. We assume linear dependences of ¢ and U on S in the conducting region; then for
pr= p=1(Sy =87 =8y), we have

6(S)=0 and U(S) =0, (3)
or for 0 = p = p; (8; =831 =8y), we have
o(S) =AS+4 Band U (S) = aS + . (4)
Here A, B, o, and B are the linearization constants; and Sy, Sy, and S; = S(py) are the heat-conduction func-
tions at the wall, the axis, and the boundary of the conducting region, respectively.
Using the boundary conditions

p=1 S=8y, p=0 S=3G,

[ dS
fatedl — 5]
(dp)pzo 0 (5)

and the joining conditions at the boundary of the linearization regions,
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Fig. 1. Linearization of the properties of an argon plasma with respect to the
radius of the arc channel (@ = 9.806 -10* N/m?. Here U =08 + 8 is in W/ cm?,
g =AS + B, mho/cem, and S is in W/cm.

Fig. 2. Current—voltage characteristics of an arc column in argon (p = 9.806
‘104 N/m?%. 1) R = 0.003; 2) 0.006 mm. Dashed curves) With an account of
radiation; solid curves) without account of radiation. I is in amperes, and E
is in V/cm.,

Fig. 3. Temperature distribution in a planar gas conductor.

we find an approximate solution of Eq. (2) in the linearization regions:

S =S g 45y, m

St (p) = (So— S o (pRV E¥A—a) + Sy, (8)
Here J is the zeroth-order Bessel function of the first kind. The temperature distribution can be found
from the S(T) dependence.

The radius of the conducting region is given by

S;—Sw 1 }
0y = expl— S ——" ———}, (9
! { So—8; vdi(v)

where p; = 2.405 and J(v,) is the Bessel function of the first kind. The electric field intensity is

'V% a—
E:‘/ p%RzA’i'—A‘, (10)

which converts when o = 0 into the familiar Mecker solution of the energy-balance equation without ac~
count of radiation: E = »;/pRVA [5].

The parameters of the arc column calculated without (subscript 0) and with an account of radiation
for identical boundary conditions (S, S, = const) are related by

E=E]/1 ¢
0 +E%A

1=10]/1+~E‘;‘Z-. (12)
0

It follows from Eqs. (7)-(12) that this account of the radiative energy transfer does not affect the
radius p, of the conducting region or the radial temperature distribution, but it does increase the required
power by a factor of (1 + a/EZA).

(11)

Figure 1 illustrates the linearization of ¢ (S) and U(S) for an argon plasma at atmospheric pressure.
The o (S) dependence was taken from [6], and the U(S) dependence was taken from [7}. Figure 2 shows the
calculated current—voltage characteristics. The points on these characteristics corresponding to the same
column-axis temperature lie on the straight line E/I = const. The calculation was carried out for a maxi-
mum temperature of 14 -10°°K at the channel axis. The effect of the radiation increases with increasing
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channel radius and with increasing current; this leads in turn to an increase in the conduction-region radius.
When radiation is taken into account, the similarity condition ER = const at EI = const for arc discharges
is disrupted, since the radiation loss is proportional to R?.

This method of calculating the radial temperature distribution and the current-—voltage characteristics,
involving the linearization of o (S) and U(S) by a single straight line in the conducting region, gives a satis-
factory description of only the desecending branch of the current—voltage characteristic; for argon at atmo-
spheric pressure, this corresponds to a temperature T, of about 13-14 -10°°K at the arc-column axis [6].
For hydrogen, the range of applicability of this procedure is much wider, since even at T = 25 -10°°K the
conducting region fills only half the channel [8]. Calculations for an arc column in hydrogen (p = 9.806 -10*
N/ mz) without an account of radiation, and with a five-region linearization of o (S), show the current—voltage
characteristic to be of a descending nature up to an axial temperature of Ty = 40-10°°K. The hydrogen prop-
erties were taken from [9].

Planar Conductor (Exact Solution). The energy-balance equation for an optically thin, planar gas con-
ductor (Fig. 3) is written, under the assumptions that there is no energy transfer along the x and z axes
and that the current flows along the z axis,

diy{a,(T)%}+c(7‘)Ez—U(T):o. (13)
Using the substitution
4T \?
(‘dg) =9, (14)
we convert Eq. (13) to
oMo +v(D) =0, (15)
where
2 anT 2 -
(D= oy 5t (1) = o lo (B —U (T (16)

Solving Eq. (15) and using the substitutions (14) and (16), we find the final expression:

T,

A(T)dT
y= = W + C,. (17)
: ‘/C1+2 f?»(T)[c(T)Ez—U(T)]dT

7 ¥

The constants C; and C, and the electric field intensity E are found from the boundary conditions (Fig. 3).
For the symmetric case, we have

for y=+y, T=T,

(18)
dT
f =0 T=Tys |—5—-)=0.
or o ( dy )0
The current flowing through a cross section of the conductor of width Ax =1 is
v
I= ZEJ o(T)dy. (19)

0

Planar Conductor (Approximate Solution). As in the case of a cylindrical conductor, we divide the
entire transverse cross section into two regions, and adopt the linear approximation for ¢ (S) and U(S) in
Eqgs. (3) and (4). Then Eq. (13) becomes

d (dS\ | o ame e
@_(_@),S(AE o)+ (B—p) = 0. (20)

The solution, for the cold region near the wall, is
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St(y) =Cy + G, (21)

for the conducting region, the solution is

_BE*—§

() = exp | ot Ity —C9 —yy A~ | —TE=L (22)

Here the constants of integration and E are found from the boundary conditions and from the joining con-
ditions at the boundary of the linearization regions. The ¢ (S) and U(S) approximation in the conducting
region should be replaced by several linear regions to increase the accuracy of the solution.

NOTATION

>

are the electrical and thermal conductivities of the gas current;

is the integral radiation;

are the longitudinal electric field intensity and current;

are the gas temperature and pressure;

is the heat-conduction function;

are the instantaneous radius, channel radius, and dimensionless or relative radius;
is the transverse coordinate.
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